Posts

Showing posts from January, 2021

Computer animation

Image
Computer animation is the process used for digitally generating animated images. The more general term computer-generated imagery (CGI) encompasses both static scenes and dynamic images, while computer animation only refers to moving images. Modern computer animation usually uses 3D computer graphics to generate a two-dimensional picture, although 2D computer graphics are still used for stylistic, low bandwidth, and faster real-time renderings. Sometimes, the target of the animation is the computer itself, but sometimes film as well. Computer animation is essentially a digital successor to stop motion techniques, but using 3D models, and traditional animation techniques using frame-by-frame animation of 2D illustrations. Computer-generated animations are more controllable than other, more physically based processes, like constructing miniatures for effects shots, or hiring extras for crowd scenes, because it allows the creation of images that would not be feasible using any other tec

Explanation

Image
To trick the eye and the brain into thinking they are seeing a smoothly moving object, the pictures should be drawn at around 12 frames per second or faster. (A frame is one complete image.) With rates above 75-120 frames per second, no improvement in realism or smoothness is perceivable due to the way the eye and the brain both process images. At rates below 12 frames per second, most people can detect jerkiness associated with the drawing of new images that detracts from the illusion of realistic movement. Conventional hand-drawn cartoon animation often uses 15 frames per second in order to save on the number of drawings needed, but this is usually accepted because of the stylized nature of cartoons. To produce more realistic imagery, computer animation demands higher frame rates. Films seen in theaters in the United States run at 24 frames per second, which is sufficient to create the illusion of continuous movement. For high resolution, adapters are used.

History

Image
Early digital computer animation was developed at Bell Telephone Laboratories in the 1960s by Edward E. Zajac, Frank W. Sinden, Kenneth C. Knowlton, and A. Michael Noll. Other digital animation was also practiced at the Lawrence Livermore National Laboratory. In 1967, a computer animation named "Hummingbird" was created by Charles Csuri and James Shaffer. In 1968, a computer animation called "Kitty" was created with BESM-4 by Nikolai Konstantinov, depicting a cat moving around. In 1971, a computer animation called "Metadata" was created, showing various shapes. An early step in the history of computer animation was the sequel to the 1973 film Westworld, a science-fiction film about a society in which robots live and work among humans. The sequel, Futureworld (1976), used the 3D wire-frame imagery, which featured a computer-animated hand and face both created by University of Utah graduates Edwin Catmull and Fred Parke. This imagery originally appeared i

Animation methods

Image
In most 3D computer animation systems, an animator creates a simplified representation of a character's anatomy, which is analogous to a skeleton or stick figure. They are arranged into a default position known as a bind pose, or T-Pose. The position of each segment of the skeletal model is defined by animation variables, or Avars for short. In human and animal characters, many parts of the skeletal model correspond to the actual bones, but skeletal animation is also used to animate other things, with facial features (though other methods for facial animation exist). The character "Woody" in Toy Story , for example, uses 700 Avars (100 in the face alone). The computer doesn't usually render the skeletal model directly (it is invisible), but it does use the skeletal model to compute the exact position and orientation of that certain character, which is eventually rendered into an image. Thus by changing the values of Avars over time, the animator creates motion by maki

Modeling

Image
3D computer animation combines 3D models of objects and programmed or hand "keyframed" movement. These models are constructed out of geometrical vertices, faces, and edges in a 3D coordinate system. Objects are sculpted much like real clay or plaster, working from general forms to specific details with various sculpting tools. Unless a 3D model is intended to be a solid color, it must be painted with "textures" for realism. A bone/joint animation system is set up to deform the CGI model (e.g., to make a humanoid model walk). In a process known as rigging , the virtual marionette is given various controllers and handles for controlling movement. Animation data can be created using motion capture, or keyframing by a human animator, or a combination of the two. 3D models rigged for animation may contain thousands of control points — for example, "Woody" from Toy Story uses 700 specialized animation controllers. Rhythm and Hues Studios labored for two years t

Equipment

Image
Computer animation can be created with a computer and an animation software. Some impressive animation can be achieved even with basic programs; however, the rendering can require much time on an ordinary home computer. Professional animators of movies, television and video games could make photorealistic animation with high detail. This level of quality for movie animation would take hundreds of years to create on a home computer. Instead, many powerful workstation computers are used. Graphics workstation computers use two to four processors, and they are a lot more powerful than an actual home computer and are specialized for rendering. Many workstations (known as a "render farm" ) are networked together to effectively act as a giant computer, resulting in a computer-animated movie that can be completed in about one to five years (however, this process is not composed solely of rendering). A workstation typically costs $2,000-16,000 with the more expensive stations being ab

Facial animation

Image
The realistic modeling of human facial features is both one of the most challenging and sought after elements in computer-generated imagery. Computer facial animation is a highly complex field where models typically include a very large number of animation variables. Historically speaking, the first SIGGRAPH tutorials on State of the art in Facial Animation in 1989 and 1990 proved to be a turning point in the field by bringing together and consolidating multiple research elements and sparked interest among a number of researchers. The Facial Action Coding System (with 46 "action units", "lip bite" or "squint"), which had been developed in 1976, became a popular basis for many systems. As early as 2001, MPEG-4 included 68 Face Animation Parameters (FAPs) for lips, jaws, etc., and the field has made significant progress since then and the use of facial microexpression has increased. In some cases, an affective space, the PAD emotional state model, can be us

Realism

Image
Realism in computer animation can mean making each frame look photorealistic, in the sense that the scene is rendered to resemble a photograph or make the characters' animation believable and lifelike. Computer animation can also be realistic with or without the photorealistic rendering. One of the greatest challenges in computer animation has been creating human characters that look and move with the highest degree of realism. Part of the difficulty in making pleasing, realistic human characters is the uncanny valley, the concept where the human audience (up to a point) tends to have an increasingly negative, emotional response as a human replica looks and acts more and more human. Films that have attempted photorealistic human characters, such as The Polar Express , Beowulf , and A Christmas Carol have been criticized as "creepy" and "disconcerting". The goal of computer animation is not always to emulate live action as closely as possible, so many animated f

Films

Image
CGI short films have been produced as independent animation since 1976. An early example of an animated feature film to incorporate CGI animation was the 1983 Japanese anime film Golgo 13: The Professional . The popularity of computer animation (especially in the field of special effects) skyrocketed during the modern era of U.S. animation. The first completely computer-animated movie was Toy Story (1995), but VeggieTales is the first American fully 3D computer animated series sold directly (made in 1993); its success inspired other animation series, such as ReBoot in 1994. While films like Avatar and The Jungle Book use CGI for the majority of the movie runtime, they still incorporate human actors into the mix.

Animation studios

Image
The examples and perspective in this section deal primarily with the United States and do not represent a worldwide view of the subject . You may improve this section, discuss the issue on the talk page, or create a new section, as appropriate. ( May 2018 ) (Learn how and when to remove this template message) Some notable producers of computer-animated feature films include: Animal Logic – Films include Happy Feet (2006), Legend of the Guardians: The Owls of Ga'Hoole (2010), Walking with Dinosaurs (2013), The Lego Movie (2014) Aardman Animations  – Films include Flushed Away (2006), Arthur Christmas (2011) Blue Sky Studios – Films include Ice Age (2002), Robots (2005), Horton Hears a Who! (2008), Rio (2011), The Peanuts Movie (2015) DreamWorks Animation – Films include Shrek (2001), Madagascar (2005), Over the Hedge (2006), Kung Fu Panda (2008), Monsters vs. Aliens (2009), How to Train Your Dragon (2010), Rise of the Guardians (2012), The Croods (2013), Tro

Web animations

The popularity of websites that allow members to upload their own movies for others to view has created a growing community of amateur computer animators. With utilities and programs often included free with modern operating systems, many users can make their own animated movies and shorts. Several free and open-source animation software applications exist as well. The ease at which these animations can be distributed has attracted professional animation talent also. Companies such as PowToon and Vyond attempt to bridged the gap by giving amateurs access to professional animations as clip art. The oldest (most backward compatible) web-based animations are in the animated GIF format, which can be uploaded and seen on the web easily. However, the raster graphics format of GIF animations slows the download and frame rate, especially with larger screen sizes. The growing demand for higher quality web-based animations was met by a vector graphics alternative that relied on the use of a plug

Detailed examples and pseudocode

In 2D computer animation, moving objects are often referred to as "sprites." A sprite is an image that has a location associated with it. The location of the sprite is changed slightly, between each displayed frame, to make the sprite appear to move. The following pseudocode makes a sprite move from left to right: var int x := 0, y := screenHeight / 2; while x < screenWidth drawBackground() drawSpriteAtXY (x, y) // draw on top of the background x := x + 5 // move to the right Computer animation uses different techniques to produce animations. Most frequently, sophisticated mathematics is used to manipulate complex three-dimensional polygons, apply "textures", lighting and other effects to the polygons and finally rendering the complete image. A sophisticated graphical user interface may be used to create the animation and arrange its choreography. Another technique called constructive solid geometry defines objects by conducting boolean operations on regular

Computer-assisted vs. computer-generated

To animate means, figuratively, to "give life to". There are two basic methods that animators commonly use to accomplish this. Computer-assisted animation is usually classed as two-dimensional (2D) animation. Drawings are either hand drawn (pencil to paper) or interactively drawn (on the computer) using different assisting appliances and are positioned into specific software packages. Within the software package, the creator places drawings into different key frames which fundamentally create an outline of the most important movements. The computer then fills in the "in-between frames", a process commonly known as Tweening. Computer-assisted animation employs new technologies to produce content faster than is possible with traditional animation, while still retaining the stylistic elements of traditionally drawn characters or objects. Examples of films produced using computer-assisted animation are The Little Mermaid , The Rescuers Down Under , Beauty and the Beast